skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saldaña, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Aerial vehicles with dozens of rotors are becoming increasingly common in important applications such as transportation and construction. One challenge with building such a system is to ensure that the system is robust against faults: as the number of rotors increases, the likelihood of a rotor failing during operation also increases; despite the spare thrust capacity provided by the redundant rotors, a rotor fault can significantly impact the motion and safety of the system. This paper presents an efficient fault detection and isolation (FDI) method for aerial vehicles with a large number of rotors. Our approach relies on two key insights: First, the effect of a faulty rotor directly affects the tracking error in roll and in pitch. This property can be used to order our faulty rotor search space. Second, the error in either roll or pitch is related to both the distance from the (relevant) axis and the severity of a fault. With these observations, we can use probe faults to isolate faulty rotors. Evaluation results show that our technique can efficiently detect and isolate faults in multi-rotor aerial vehicles with up to 64 rotors (8 more rotors than in existing FDI work), and that it can help improve robustness. To the best of our knowledge, our FDI method is the first that scales to several dozens of rotors. 
    more » « less
  3. The use of cables for aerial manipulation has shown to be a lightweight and versatile way to interact with objects. However, fastening objects using cables is still a challenge and human is required. In this work, we propose a novel way to secure objects using hitches. The hitch can be formed and morphed in midair using a team of aerial robots with cables. The hitch's shape is modeled as a convex polygon, making it versatile and adaptable to a wide variety of objects. We propose an algorithm to form the hitch systematically. The steps can run in parallel, allowing hitches with a large number of robots to be formed in constant time. We develop a set of actions that include different actions to change the shape of the hitch. We demonstrate our methods using a team of aerial robots via simulation and actual experiments. 
    more » « less